Система уравнений Максвелла

Алёна Савинцева

Формулы Дж. Максвелла являются основой теоретического описания электромагнитных явлений, которое предложил ученый. С помощью выявленных закономерностей объясняют эмпирические факты, известные в тот период времени, и предсказываются некоторые эффекты. Основным выводом, который выражает теория Максвелла, является положение, подтверждающее наличие волн электромагнитного характера, распространяющихся со скоростью света.

Уравнения Максвелла

Уравнения Максвелла представляют собой обобщение уравнений в дифференциальной или интегральной форме, объясняющую характер любых электромагнитных полей, взаимосвязи токов и электрических зарядов в любых средах.

С помощью обозначения формул Максвелла обобщают основные закономерности электрических и электромагнитных явлений. Как основа теоретического исследования электромагнитного поля, данная система формул направлена на решение задач на поиск электрических и магнитных полей, образованных путем заданного распределения электрических зарядов и токов. Уравнения Максвелла послужили основой для развития теории относительности Эйнштейна. Благодаря объяснению теории Максвелла, удалось раскрыть электромагнитную природу света.

Дж. Максвелл сформулировал оригинальные уравнения в 60-х годах XIX века. Главными источниками для исследований послужили эмпирические законы и идеи ученых, работы которых связаны с изучением электромагнитных явлений, включая Кулона, Био-Савара, Ампера, Фарадея.

Самостоятельно Максвеллом было выведено 20 формул, в которых использовалось 20 неизвестных, записанных в дифференциальном виде. В дальнейшем уравнения были преобразованы. Данные исследования получили негативные оценки критиков, которые являлись современниками Максвелла. Причиной является существенное отличие предложенных формул от ранее известных определений.

Несмотря на скептическое отношение в то время, сегодня уравнения Максвелла воспринимаются, как правильные и справедливые не только для привычного макромира, но и областей квантовой механики. Благодаря данному исследованию, произошел настоящий переворот восприятия людьми научной картины мира. Уравнения предвосхитили обнаружение радиоволн и продемонстрировали смысл электромагнитной природы света.

Уравнения Максвелла в современной интерпретации несколько отличаются от нынешней формы записи. Современные преобразованные формулы являются результатом трудов немецкого физика Г. Герца и английского физика О. Хевисайда.

Границы применимости уравнений Максвелла

При необходимости исследований с учетом движения среды, формулы Максвелла не изменяют, а движение учитывают при составлении материальных уравнений. В данных отношениях наблюдается зависимость от характеристики скорости сред, что усложняет формулы в системе СИ. При этом материальные уравнения более не являются соотношениями между парами величин. К примеру, наблюдается зависимость плотности тока проводимости от индукции магнитного поля, наряду с напряженностью электрического поля. Для системы уравнения Максвелла характерны следующие ограничения:

  • неподвижность материальных тел в поле;
  • зависимость постоянных ε, μ, σ от координат, но не от времени и векторов поля;
  • отсутствие в поле постоянных магнитов и ферромагнетиков.
Уравнение Максвелла
Источник: i.ytimg.com

При известной величине намагниченности представляется возможным описать магнитное поле постоянных магнитов с применением системы уравнений Максвелла. В случае заданных токов поле с ферромагнетиками с помощью данных формул описать не получится.

Первое уравнение Максвелла

Описание данного уравнения тесно связано с понятием дивергенции. Данное явление называют дифференциальным оператором, с помощью которого определяют поток конкретного поля сквозь какую-то поверхность. Уместно сравнить данную систему с краном или трубой. К примеру, при большом диаметре крана и напора в трубе увеличивается поток жидкости через поверхность в виде крана. Современная форма первого уравнения Максвелла имеет следующий вид:

\(div\vec{E}=\frac{\rho }{\varepsilon _{0}}\)

В данном уравнении Максвелла Е является векторным электрическим полем, зависящим от суммарного заряда, который заключен внутри замкнутой поверхности. Данное уравнение является законом Гаусса.

Второе уравнение Максвелла

Данная формула, выведенная ученым, представляет собой закон Фарадея. На основе данных закономерностей функционируют электрические двигатели. В конструкции моторов ток в катушке возникает, благодаря вращающимся магнитам. Второе уравнение Максвелла имеет следующий вид:

\(rot\vec{E}=\frac{d\vec{B}}{dt}\)

Ротор электрического поля в виде интеграла через замкнутую поверхность выражается скоростью, с которой изменяется магнитный поток, пронизывающий эту поверхность. Наглядным примером такого явления может служить вода в ванной, сливаемая через отверстие. Вокруг слива будет образована воронка. Ротор в этом случае будет являться суммой или интегралом векторов скоростей молекул воды, вращающихся вокруг сливного отверстия.

Третье уравнение Максвелла

Представленная ученым формула является законом Гаусса. Следует отметить, что третье уравнение Максвелла справедливо не для электрического поля, а для магнитного. Формулировка имеет следующий вид:

\(div\vec{B}=0\)

Данное соотношение демонстрирует нулевое значение потока магнитного поля через замкнутую поверхность. Электрические заряды с положительным или отрицательным значением существуют отдельно друг от друга и приводят к образованию электрического поля в окружающей среде. Магнитные заряды в природе отсутствуют.

Четвертое уравнение Максвелла

Данная формула считается наиболее важной из всех приведенных ранее. Согласно четвертому уравнению, Максвелл определил что такое ток смещения. Равенство записывают таким образом:

\(rot\vec{B}=\frac{j}{\varepsilon _{0}c^{2}}+\frac{1}{c^{2}}\frac{dE}{dt}\)

Данные уравнения носят название теоремы о циркуляции вектора магнитной индукции. Согласно этому утверждению, вихревое магнитное поле образовано электрическим током и изменением электрического поля.

Следствия из уравнений Максвелла

Все формулы объясняют определенные явления. Суть каждого из них заключается в следующем:

  • первое уравнение – электрическое поля образовано электрическим зарядом;
  • второе уравнение – вихревое электрическое поле является результатом изменений магнитного поля;
  • третье уравнение – отсутствие в природе магнитных зарядов;
  • четвертое уравнение – вихревое магнитное поле сформировано электрическим током и изменением электрической индукции.
Электрические заряды
Источник: kamerata.org

Уравнения Максвелла полностью соотносятся с принципами специальной теории относительности. Формулы необходимы для микроскопического описания вещества в условиях классического электромагнитного поля и заряженных частиц, подчиняющихся принципам квантовой механики. Более последовательное объединение полевого подхода с принципами квантовой механики осуществляют по средствам методов квантовой теории поля в квантовой электродинамике.

Подобные дисциплины изучают студенты современных профильных вузов. Данные области научных знаний достаточно сложны для восприятия. Поэтому при возникновении трудностей в образовательном процессе можно обратиться к ресурсу Феникс.Хелп.

Заметили ошибку? Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»

Бесплатно отвечаем на ваши вопросы. Задайте свой вопрос и получите ответ от профессионального преподавателя. Выберите лучший ответ.

Вопросы могут задавать только авторизованные пользователи. Войти