Диагональные матрицы: определение и свойства

Дарья Перепелкина

Матрица — это прямоугольная таблица чисел, состоящая из определенного количества строк и столбцов. Существует множество матричных видов, и один из них — диагональный. Разберемся, что он из себя представляет.

Что такое диагональная матрица

У диагональной матрицы элементы, расположенные вне главной диагонали, равны нулю.

Матрица
 

Напомним, что матрица считается квадратной, если количество строк равно количеству столбцов (m = n).

Особенности и свойства

Для начала нужно понять, что такое матричный определитель.

Определитель (детерминант) — это некоторая величина, с которой можно сопоставить любую квадратную матрицу.

Определитель А = (2×2), к примеру, вычисляется по формуле:

Определитель
 

Из этого следует свойство №1: определитель диагональной матрицы равен произведению ее диагональных элементов.

Свойство №2: обратная матрица для диагональной равна:

Свойство 2
 

Свойство №3: ранг равен количеству ненулевых диагональных элементов.

Главная и побочная диагонали

Главную диагональ образуют элементы, расположенные на местах \(а_{11}\), \(а_{22}\), \(а_{33}\)\(а_{NN}\). Их соответственно называют диагональными.  

Диагональ
 

Побочной диагональю называют диагональ элементов от правого верхнего угла до нижнего левого. Эти диагонали параллельны друг другу.

Частные случаи диагональных матриц

Существуют три основных подвида: единичная, нулевая, скалярная.

Единичная матрица

У единичной матрицы все диагональные элементы равны единице.

Единичная матрица
 

В формулах ее обозначают буквой Е.

Нулевая матрица

В нулевой матрице все элементы, в том числе диагональные, равны нулю.

Нулевая матрица
 

В формулах ее обозначают цифрой 0.

Скалярная матрица

В скалярной матрице все элементы на главной диагонали равны друг другу.

Скалярная матрица
 

В некоторых случаях говорят, что скалярная матрица — это произведение скаляра на единичную матрицу Е. В ней диагональные элементы могут быть как положительными, так и отрицательными.

Примеры решения диагональных матриц

Иногда недиагональная матрица может быть приведена к диагональному виду.

Условие: дана матрица А

Условие задачи
 

Задача: привести к диагональному виду.

Решение: характеристическое уравнение равно

Решение 1
 

а его корни: \(λ_1 = 5\), \(λ_2 = (-2)\)

Если \(λ_1 = 5\), то

Решение 2
 

Пусть \(х_2 = с\), тогда вектор равен:

Решение 3
 

Если \(x = λ_2 = (-2)\), то

 

Пусть \(х_2 = с\), тогда вектор равен:

Решение 5
 

Таким образом, диагональная матрица имеет вид:

Ответ
 

Изучение данных математических объектов имеет свои подводные камни. Если у вас нет времени на учебу, Феникс.Хелп может помочь вам с решением контрольных, самостоятельных и иных проверочных работ.

Заметили ошибку? Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»

Бесплатно отвечаем на ваши вопросы. Задайте свой вопрос и получите ответ от профессионального преподавателя. Выберите лучший ответ.

Вопросы могут задавать только авторизованные пользователи. Войти