Решение задач по теме «Закон Кулона»

Алёна Савинцева

Понять окружающий мир можно с помощью фундаментальных законов физики. Благодаря изучению взаимодействия электрических зарядов ученые совершают открытия в области электродинамики. Данные закономерности были обнаружены еще до Шарля Кулона. Однако исследователь первым обнародовал свои выводы.

Закон Кулона простым языком

С помощью данной закономерности можно описать механизм взаимодействия тел, обладающих зарядом. Закон Кулона является фундаментальным, то есть обладает экспериментальным подтверждением и не был установлен на основе какого-либо природного закона. Формулировка утверждения справедлива для точечных зарядов в вакуумной среде, которые неподвижны. В реальном мире подобная ситуация невозможна. Однако таковыми можно считать заряды, обладающие размерами, существенно меньшими по сравнению с расстоянием между ними. Сила взаимодействия в воздухе практически соизмерима с силой взаимодействия в вакууме и отличается лишь на одну тысячную.

Электрическим зарядом называют физическую величину, определяющуюся свойством частиц или тел вступать в электромагнитные силовые взаимодействия.

Описание механизма взаимного воздействия неподвижных зарядов друг на друга было представлено физиком из Франции Ш. Кулоном в 1785 году. В подтверждение закона были проведены опыты по измерению взаимодействия между шарами с размерами, которые значительно меньше, чем расстояние, на котором они расположены. Подобные тела получили название точечных зарядов. По итогам многочисленных опытов Кулон вывел закон.

Кулон
Источник: avatars.mds.yandex.net

Закон Кулона гласит, что сила взаимодействия двух точечных электрических зарядов, расположенных неподвижно, в вакуумной среде прямо пропорциональна произведению их модулей и обратно пропорциональна квадрату расстояния между ними. Вектор силы ориентирован вдоль прямой, соединяющей заряды. Данная сила является силой притяжения в случае, когда заряды разноименные, либо силой отталкивания, если заряды одноименные.

Модули зарядов обозначают, как \(|q_1|\) и \(|q_2|\). В этом случае Закон Кулона можно представить в виде уравнения:

\(F=k\times \frac{\left|q1 \right|\times \left|q2 \right|}{r^{2}}\)

Коэффициент пропорциональности k, согласно закону Кулона, определяется выбором системы единиц.

\(k=\frac{1}{4\pi \varepsilon _{0}}\)

Полная формула закона Кулона обладает следующим видом:

\(F=\frac{\left|q1 \right|\times \left|q2 \right|}{4\pi \varepsilon _{0}\varepsilon r^{2}}\)

где \(F\) — Сила Кулона,

\(q_1\) и \(q_2\) являются электрическими зарядами тел;

r — расстояние между зарядами;

\(\varepsilon _{0}\) — электрическая постоянная, равная \(8,85*10^{-12}\);

\(\varepsilon \)  — диэлектрическая проницаемость среды, равная 9*109;

k — коэффициент пропорциональности в законе Кулона.

Силы взаимодействия определяются третьим законом Ньютона:

\(\vec{F}_{12}=\vec{F}_{21}\)

Данные силы представляют собой силы отталкивания при одинаковых знаках зарядов и силами притяжения при разных знаках. Для обозначения электрических зарядов используют буквы q и Q. Благодаря имеющимся фактам, полученным в результате экспериментов, можно сделать следующие выводы:

  1. Имеется два типа электрических зарядов, которые условно обозначают положительными и отрицательными.
  2. Допускается передача заряда от одного объекта к другому, так как в отличие от массы, не принадлежат к категории неотъемлемых характеристик тела, поэтому один и тот же объект при разных обстоятельствах может обладать как положительным, так и отрицательным зарядом.
  3. Одноименные заряды будут отталкиваться, а разноименные — притягиваться, что подтверждает принципиальную разницу между электромагнитными и гравитационными силами, ведь, благодаря гравитации тела в любом случае притягиваются друг к другу.

Электрическое или кулоновское взаимодействие называют взаимодействием неподвижных электрических зарядов. Существует специальный раздел в электродинамике под названием электростатика, целью которого является изучение кулоновского взаимодействия. Справедливое утверждение закона Кулона распространяется на точечные заряженные тела. В случае когда размеры зарядов намного меньше, чем расстояние между ними, закон Кулона действует на практике. Для его выполнения необходимо соблюдать несколько важных условий:

  • точечность зарядов;
  • неподвижность зарядов;
  • взаимодействие зарядов в вакууме.
Взаимодействие зарядов
Источник: infourok.ru

Кулоном называют заряд, который проходит за 1 секунду через поперечное сечение проводника при силе тока 1 Ампер.

Единица силы тока — Ампер — относится к основным единицам измерения таким, как длина, время, масса. В Международной системе СИ принято использовать в качестве единицы заряда кулон (Кл).

Применение закона Кулона на практике

Закон Кулона работает во всех областях современной электротехники. Данное утверждение справедливо, начиная с электрического тока, заканчивая простейшим заряженным конденсатором. Простейший случай — введение диэлектрика. Сила, с которой заряды взаимодействуют в вакууме, больше, чем сила взаимодействия аналогичных зарядов, разделенных диэлектрическим материалом.

Диэлектрической проницаемостью среды называют величину для количественного определения сил, независимо от расстояния между зарядами и от их величин. Чтобы рассчитать силу, которая будет действовать в присутствии диэлектрика, необходимо силу взаимодействия зарядов в вакууме поделить на диэлектрическую проницаемость внесенного диэлектрика.

С помощью изучения закона Кулона удается спроектировать сложное исследовательское оборудование в виде ускорителя заряженных частиц. Подобные установки функционируют на механизме взаимодействия электрического поля и заряженных частиц. Энергия частицы увеличивается за счет работы, которую совершает электрическое поле в ускорителе. Закон Кулона в этом случае полностью соблюдается, так как ускоряемую частицу можно рассмотреть в качестве точечного заряда, а действие ускоряющего электрического поля ускорителя представить в виде суммарной силы со стороны других точечных зарядов.

Направление частицы, исходя из силы Лоренца, определяет магнитное поле. Данная сила не воздействует на энергию и траекторию движения частиц в ускорителе.

Устройство
Источник: sb.by

К наиболее распространенным защитным электротехническим сооружениям относят молниеотводы. Работа данного устройства основана на законе Кулона. Гроза сопровождается появлением на Земле больших индуцированных зарядов. Заряды притягиваются в направлении грозовой тучи. В результате на поверхности планеты образуется мощное электрическое поле. В области острых проводников напряженность поля достигает больших значений. На заостренном наконечнике молниеприемника включается коронный заряд, который притягивается к заряду грозового облака, согласно закону Кулона. Около молниеотвода коронный заряд сильно ионизирует воздух, что приводит к уменьшению напряженности электрического поля вблизи острия. Индуцированные заряды не скапливаются на здании, что снижает вероятность возникновения молний. При ударе молнии заряд полностью будет отведен в землю без повреждения установки.

Примеры решения задач на напряженность электрического поля

Задача 1

В вакуумной среде расположена пара одинаковых положительных точечных зарядов. Расстояние между ними составляет r. Необходимо определить напряженность электрического поля в точке, которая равноудалена на расстояние r от этих зарядов.

Решение:

Исходя из принципа суперпозиции полей, напряженность, которую нужно вычислить, определяется геометрической суммой напряженностей полей, которые создаются зарядами. Формула будет иметь следующий вид:

\(\vec{E}=\vec{E_{1}}+\vec{E_{2}}\)

Модули напряженности полей зарядов определяются таким образом:

\(\vec{E_{1}}=\vec{E_{2}}=k\frac{q}{r^{2}}\)

Если с помощью векторов первого и второго электрических полей построить параллелограмм, то его диагональ будет обозначать напряженность результирующего поля. Модуль напряженности результирующего поля равен:

\(E=2E_{1}\cos 30^{0}=2k\frac{q}{r^{2}}\frac{\sqrt{3}}{2}=k\frac{q\sqrt{3}}{r^{2}}\)

Задача 2

Проводящая сфера, радиус (R) которой равен 0,2 метра, обладает зарядом (q) \(1,8*10^{-4}\) Кл. Сфера находится в вакуумной среде. Необходимо определить:

  • модуль напряженности электрического поля \(\vec{E}\) на ее поверхности;
  • модуль напряженности электрического поля \(\vec{E_{1}}\) в точке, которая удалена на расстояние \(r_1\) = 10 метров от центра сферы;
  • модуль напряженности \(\vec{E_{0}}\) в центральной точке сферы.

Решение:

Электрическое поле, характерное для заряженной сферы, будет равно полю точечного заряда. Отсюда следует равенство:

\(E=k\frac{q}{r^{2}}\)

Таким образом, искомые величины можно рассчитать:

  • \(E=k\frac{q}{R^{2}}=4\times 10^{7}\) (Н/Кл);
  • \(E=k\frac{q}{r_{1}^{2}}=16\times 10^{3}\) (Н/Кл);
  • напряженность поля в сфере, независимо от местонахождения точки, соответствует нулевому значению, то есть Е0 = 0.

Знание основных физических формул является гарантией успешного решения задач не только школьной программы, но и вуза. Если в процессе обучения и постижения законов физики у студентов возникают проблемы, то решение есть. Можно воспользоваться сервисом Феникс.Хелп, чтобы сэкономить массу времени и получить результат высокого качества. 

Заметили ошибку? Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»

Бесплатно отвечаем на ваши вопросы. Задайте свой вопрос и получите ответ от профессионального преподавателя. Выберите лучший ответ.

Вопросы могут задавать только авторизованные пользователи. Войти